Ameliorative Effect of Gallic Acid Against Sodium Fluoride-Induced Hypertension and Hepato-Renal Complications In Wistar Rats

  • Olufunke O Ola-Davies
Keywords: Sodium fluoride, Gallic acid, Hypertension, hepatotoxicity

Abstract

Gallic acid (GA) derivatives occur naturally in plants and it has been reported to possess antioxidant properties against various diseases. Here, the ameliorative effects of GA on sodium fluoride (NaF) induced hypertension and hepatotoxicity was studied. Four groups of seven rats each were used in this study. Group A received distilled water (control), group B received NaF (300 ppm), groups C and D received NaF + GA (60 mg/kg) and NaF + GA (120 mg/kg) respectively through oral gavage, for 7 days. The results showed that NaF alone significantly increased systolic, diastolic and mean arterial blood pressure. Administration of NaF also significantly raised both renal and hepatic hydrogen peroxide (H2O2), malondialdehyde (MDA), protein carbonyl (PC), serum myeloperoxidase (MPO) and significantly decreased reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase and glutathione-s-transferase (GST). However, GA co-administration with NaF reduced high blood pressure and markers of oxidative stress, improved antioxidant defence system. It also ameliorated structural changes in renal and hepatic tissue morphology. Our findings thus suggest that gallic acid is a potential drug candidate in the treatment of NaF induced hypertension and hepatotoxicity.

References

Abdel-Zaher A.O., Farghaly H.S.M., El-Refaiy A.E.M., Abd-Eldayem A.M. (2018). Protective effect of the standardized leaf extract of Ginkgo biloba (EGb761) against hypertension-induced renal injury in rats. Clin. Exp. Hypertens. 19, 1-12.
Barbier O., Arreola-Mendoza L., Del Razo L. M. (2010). Molecular mechanisms of fluoride toxicity. Chemico-Biol. Interact. 188(2), 319–333.
Beutler E., Duron O., Kelly B.M. (1963). Improved method for the determination of blood glutathione. J. lab. Clin. Med. 61, 882-888
Boveris A., Repetto M.G., Bustamante J., Boveris A.D., Valdez L.B. (2008). The concept of oxidative stress in pathology. In: Álvarez, S.; Evelson, P. (ed.), Free Radical Pathophysiology, pp. 1-17, Transworld Research Network: Kerala, India, ISBN: 978-81- 7895-311-3
Chlubek D., Grucka-Mamczar E., Birkner E., Polaniak R., Stawiarska-Pieta B., Duliban H. (2003). Activity of pancreatic antioxidative enzymes and malondialdehyde concentrations in rats with hyperglycemia caused by fluoride intoxication. J. Trace Elem. Med. Biol. 17, 57-60.
Clarkson J.J, Kevin H., David B., Richardson L.M. (2000). International collaborative research on fluoride. J. Dent. Res. 79(4), 893-904.
Coyle C. H., Martinez L. J., Coleman M. C., Spitz D. R., Weintraub N. L., Kader K. N. (2006). Mechanisms of H2O2-induced oxidative stress in endothelial cells. Free Radic. Biol. Med. 40, 2206-13.
Drury R.A. (1976). Wallington E.A., Editors. Carlton’s Histopathological Techniques. 4th ed. London: Oxford University Press. p. 139-142.
Fernández-Martínez E., Jiménez-Santana M., Centeno-Álvarez M., Torres-Valencia J.M., Shibayama M., Cariño-Cortés R. (2018). Hepatoprotective Effects of Nonpolar Extracts from Inflorescences of Thistles Cirsium vulgare and Cirsium ehrenbergii on Acute Liver Damage in Rat. Pharmacogn. Mag. 13(Suppl 4), S860-67.
Fernando N., Wickremesinghe S., Niloofa R., Rodrigo C., Karunanayake L., De Silva H. J., Handunnetti S. M. (2016). Protein carbonyl as a biomarker of oxidative stress in severe leptospirosis, and its usefulness in differentiating leptospirosis from dengue infections. PLoS ONE, 11(6), 1–15.
Gornal A.G., Bardawill J.C., David M.M. (1949). Determination of serum proteins by means of biuret reaction. J. Biol. Chem. 177, 751–66.
Gospodaryov, D., Lushchak, V. (2012). Oxidative Stress: Cause and Consequence of Diseases. Oxidative Stress and Diseases.
Habig W.H., Pabst M.J., Jakoby W.B. (1974). Glutathione S‑transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem.
Huang Y., Wang H., Wang Y., Peng X., Li J., Gu W., He T., Chen M. (2018). Regulation and mechanism of miR-146 on renal ischemia reperfusion injury. Pharmazie. 73(1), 29-34.
IPCS (2002). Fluorides. Geneva, World Health Organization, International Programme on Chemical Safety (Environmental Health Criteria 227).
Jacques-Silva M.C., Nogueira C.W., Broch L.C., Flores E.M.M., Rocha J.B.T. (2001). Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascor- bic acid in liver and brain of mice. Pharmacol. Toxicol. 88(3), 119-25
Janssen P.J.C.M., Janus J.A., Knaap A.G.A.C. (1988). Integrated criteria document fluorides — effects. Bilthoven, National Institute of Public Health and Environmental Protection (Appendix to Report No. 75847005)
Jin L., Piao Z. H., Sun S., Liu B., Kim G. R., Seok Y. M., Jeong M. H. (2017). Gallic Acid Reduces Blood Pressure and Attenuates Oxidative Stress and Cardiac Hypertrophy in Spontaneously Hypertensive Rats. Sci. Reports. 7(1), 1–14.
Jollow D.J., Mitchell J.R., Zampaglione N. (1974). Bromobenzene‑induced liver necrosis. Protective role of glutathione and evidence for 3, 4‑bromobenzene oxide as the hepatotoxic metabolite. Pharmacol. 11, 151‑169.
Jung H.J., Kim S.J., Jeon W.K., Kim B.C., Ahn K., Kim K., Kim Y.M., Park E.H., Lim C.J. (2011). Anti-inflammatory activity of n-propyl gallate through down-regulation of NF-κB and JNK pathways. Inflammation. 34, 352-61.
Kale M., Rathore N., John S., Bhatnagar D. (1999). Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicol. Lett.105, 197- 205
Karimi-Khouzani O., Heidarian E., Amini S.A. (2017). Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats. Pharmacol. Rep. 69(4), 830-35.
Khaledi H., Alhadi A.A., Yehye W.A., Ali H.M., Abdulla M.A., Hassandarvish P. (2011). Antioxidant, Cytotoxic Activities, and Structure-activity relationship of gallic acid-based indole Derivatives. Arch. Pharm (Weinheim). 344,703-09.
Kim S.H., Jun C.D., Suk K., Choi B.J., Lim H., Park S., Lee S.H., Shin H.Y., Kim D.K., Shin T.Y. (2006). Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicol. Sci. 91, 123-31.
Klahr S. (2001). The role of nitric oxide in hypertension and renal disease progression. Nephrology, Dialysis, Transplantation, 16(Suppl 1), 60
Korchazhkina O., Exley C., Andrew S.S. (2003). Measurement by reversed-phase high- performance liquid chromatography of malondialdehyde in normal human urine following derivatisation with 2,4-dinitrop henylhydrazine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 794, 353-62.
Lea Maria Bezerra de M., Maria Cristina V., Pedro Luiz R., Jaime Aparecido C. (2003). Bone as a biomarker of acute fluoride toxicity. Forensic Sci. Intern. 137, 209-14.
Loria V., Dato I., Graziani F., Biasucci L. M. (2008). Myeloperoxidase: A New Biomarker of Inflammation in Ischemic Heart Disease and
Misra H.P., Fridovich I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol, Chem, 247(10), 3170-5.
Nabavi S.M., Habtemariam S., Nabavi S.F. Sureda A., Daglia M., Moghaddam A.H., Amani M.A. (2013). Protective effect of gallic acid isolated from Peltiphyllum peltatum against sodium fluoride-induced oxidative stress in rat's kidney. Mol. Cell Biochem. 372(1-2), 233-9.
Nayeem N., Asdaq S., Salem H., AHEl-Alfqy S. (2016). Gallic Acid: A Promising Lead Molecule for Drug Development. J. Applied Pharmacy.
Nunes D.V., Costa C.A., De Bem G.F., Cordeiro V.S., Santos I.B., Carvalho L.C., Jordão A.K., Cunha A.C., Ferreira V.F., Moura R.S., Resende A.C., Ognibene D.T. (2018). Tempol, a superoxide dismutase-mimetic drug, prevents chronic ischemic renal injury in two-kidney, one-clip hypertensive rats. Clin. Exp. Hypertens. 23, 1-9.
Olaleye, S.B., Adaramoye, O.A., Erigbali, P.P. and Adeniyi, O.S. (2007). Lead exposure increases oxidative stress in the gastric mucosa of HCl/ethanol-exposed rats. World J. Gastroenterol, 13(38), 5121-26.
Oyagbemi A.A., Omobowale T.O., Asenuga E.R., Adejumobi A.O., Ajibade T.O., Ige T.M., Ogunpolu B.S., Adedapo A.A., Yakubu M.A. (2017). Sodium fluoride induces hypertension and cardiac complications through generation of reactive oxygen species and activation of nuclear factor kappa beta. Environ. Toxicol. 32(4), 1089-1101.
Patekar D., Kheur S., Bagul N., Kulkarni M., Mahalle A., Ingle Y., Dhas V. (2013). Antioxidant Defence System. Oral & Maxillofacial Pathol.
Purena R., Seth R., Bhatt R. (2018). Protective role of Emblica officinalis hydro-ethanolic leaf extract in cisplatin induced nephrotoxicity in Rats. Toxicol. Rep. 5, 270-77.
Repetto M., Semprine J., Boveris A. (2012). Lipid Peroxidation: Chemical Mechanism, Biological Implications and Analytical Determination. J. Free Radic. Biol. Med. 1, 3–30.
Reznick A.Z., Packer L. (1994). Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 233, 357–363
Sachdeva M., Chadha R., Kumar A., Karan M., Singh T., Dhingra S. (2015). Hepatoprotective effect of trimethylgallic acid esters against carbon tetrachloride-induced liver injury in rats. Indian J. Exp. Biol. 53(12), 803-9.
Shivarajashankara Y.M., Shivashankara A.R., Gopalakrishna Bhat P., Hanumanth Rao S. (2001). Effect of fluoride intoxication on lipid peroxidation and antioxidant systems in rats. Fluoride. 34(2), 108- 113.
Stress and Cardiac Hypertrophy in Spontaneously Hypertensive Rats. Sci. Reports. 7(1), 1–14.
Varshney R., Kale R.K. (1990). Effect of calmodulin antagonists on radiation induced lipid peroxidation in microsomes. Int. J. Radiat. Biol. 58, 733-43.
Veerapur V, Thippeswamy B, Prabhakar K, et al. (2011). Anti- oxidant and renoprotective activities of Ficus racemosa Linn. stem bark: Bioactivity guided fractionation study. Biomed. Prev. Nutr. 1(4), 273-81.
Wadhwani P. K. A. (2012). Antioxidant Enzyme. Antioxidant Enzyme. https://doi.org/10.5772/2895
Wolff S.F. (1994). Ferrous ion oxidation in the presence of ferric ion indicator xylenol orange for measurement of hydrogen peroxides. Methods Enzymol. 233, 182-89.
World Health Organisation. (2006). Fluoride in Drinking-water Back Ground Document. Guidelines for Drinking-Water Quality, 1–9.
Xia Y., Zweier J.L. (1997). Measurement of myeloperoxidase in leukocyte-containing tissues. Anal. Biochem. 245, 93–96.
Xueting L, Rehman M.U., Zhang H., Tian X., Wu X., Shixue., Mehmood K., Zhou D. (2018). Protective effects of Nano-elemental selenium against chromium-vi-induced oxidative stress in broiler liver. J. Biol. Regul. Homeost. Agents. 32(1), 47-54.
Yang C., Li L., Ma Z., Zhong Y., Pang W., Xiong M., Fang S., Li Y. (2018). Hepatoprotective effect of methyl ferulic acid against carbon tetrachloride-induced acute liver injury in rats. Exp. Ther. Med. 15(3), 2228-38.
Published
2019-01-02
Section
Research Articles