Phytochemical, analgesic, in-vitro anti-oxidant and GC-MS analysis of Vernonia amygdalina leaves

  • A T Adeoye
  • Akinyele Stephen Akinrinde
  • Adetokunbo Ademola Oyagbemi
  • Temitayo Omobowale
  • Aduragbenro Adedapo
  • Abiodun Emmanuel Ayodele,
  • M A Yakubu Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Texas Southern University, Houston, TX, USA
  • Adeolu Adedapo
Keywords: Vernonia amygdalina, phytochemistry

Abstract

The powdered leaf of Vernonia amygdalina was subjected to phytochemical screening, and in vitro antioxidant studies. The volatile oil of the leaves of the plant was also screened to determine the constituents. Analgesic tests using acetic acid induced writhing and paw licking (formalin) test in mice were also carried out. The in vitro antioxidant assay used include FRAP, ABTS, DPPH, and NO assay and then compared these with standards (Vitamin E and Rutin). Results showed the presence of saponins and tannins strongly, while alkaloids, flavonoids, anthraquinones and terpenoids were present in little quantities. On the other hand however, cardiac glycosides were absent in the plant. In the FRAP assay method, the absorbance of Vernonia amygdalina was found to be dose dependent with the maximum absorbance of 0.641nm at 0.5mg/ml which was significantly higher than that of rutin (0.56nm) and lower than that of Vitamin E (0.77nm). The ABTS radical scavenging activity of Vernonia amygdalina showed a dose dependent increase in the inhibition of the ABTS radical scavenging activity (91.93, 95.42, 99.24, 99.34 and 99.53% at 0.025, 0.05, 0.1, 0.2 and 0.5mg/ml respectively). This was comparable to that of rutin. The extract and the reference antioxidant (Rutin and Vitamin E) promoted an inhibition of DPPH radical at all concentrations tested in this study. Vernonia amygdalina showed a relatively stable effect in inhibiting the DPPH radical at all doses tested reaching 74.76%, 69.11% and 86.90% for Vernonia amygdalina, Vitamin E and Rutin respectively at the highest concentration. Vernonia amygdalina showed a dose dependent increase in the inhibition of the nitric oxide radical. The major compounds obtained from the GC-MS analysis of the essential of Vernonia amygdalina in this study were caryophyllene oxide (23.48%), phytol (22.92%), 2-Pentadecanone, 6,10,14-trimethyl (12.98%), hexadecanoic acid ethyl ester (12.24%), Oxirane, heptadecyl (12.11%), benzaldehyde (4.97%), benzeneacetaldehyde (5.83%), and trans-beta-ionone (5.47%). The methanol leaf extract of Vernonia amygdalina inhibited the acetic acid induced writhing in a manner comparable with the standard drug used in this study. The paw licking (formalin) test produces a distinct biphasic response to pain stimulus and the extract caused a dose dependent decrease in the inhibition of pain in both phases of the formalin paw lick test

References

Alasalvar, C.; Shahidi, F. and Cadwallader, K.R. (2003). Comparison of natural and roasted Turkish Tombul hazelnut (Corylus avellana L.) volatiles and flavor by DHA/GC/MS and descriptive sensory analysis. J. Agric. Food Chem. 51, 5067–5072.
Ames BN, Shigenaga MK, Hagen TM. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci., 90:7915-22.
Arabshahi-Delouee S., Urooj A., (2007). Antioxidant properties of various solvent extracts of mulberry (Morus indica L) leaves. Food Chem., 102 pp. 1233-1240
Asokkumar S, Naveenkumar C, Raghunandhakumar S, Kamaraj S, Anandakumar P, Jagan S et al., (2012) Antiproliferative and antioxidant potential of beta-ionone against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Mol Cell Biochem 363:335–345
Ayoola GA, Coker HAB, Adesegun SA, Adepoju-Bello AA, Obaweva K, Ezennia EC, Atangbayila TO (2008). Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Trop. J. Pharm. Res., 7: 1019-1024.
Benzie, I.F.F., Strain, J.J. (1996). The ferric reducing ability of plasma as a measure of ‘antioxidant power’: the FRAP assay Anal. Biochem., 239 , pp. 70-76
Bharathy V, Uthayakumari F. (2013). Bioactive components in leaves of Jatropha tanjorensis JL Ellis and Saroja by GC-MS analysis. Int J PharmTech Res., 5:1839-43.
Carolina de Menezes Camila, Santos Patrício, Salvadori Mirian Stiebbe, Gomes Mota Vanine, et al., (2013). “Antinociceptive and Antioxidant Activities of Phytol In Vivo and In Vitro Models,” Neuroscience Journal, vol. 2013, Article ID 949452, 9 pages,
Chandra, A.; Nair, M.G. (1993). Quantification of benzaldehyde and its precursors in Montmorency cherry (Prunus cerasus L.) kernels. Phytochem. Anal. 4, 120–123..
Chung Y.C. , Chang C.T., Chao W.W., Lin C.F., Chou S.T. (2002). Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1.
Cooper, C. M., Davies, N. W., & Menary, R. C. (2003). C-27 Apocarotenoids in the Flowers of Boronia megastigma (Nees). Journal of Agricultural and Food Chemistry, 51, 2384-2389
Dixon R. A., Xie, D. Y. and Sharma S. B. (2005). “Proanthocyanidins—a final frontier in flavonoid research?” New Phytologist, vol. 165, no. 1, pp. 9–28, 2005.
Erasto P, Grierson DS, Afolayan AJ. (2007). Evaluation of antioxidant activity and the fatty acid profile of the leaves of Vernonia amygdalina growing in South Africa. Food Chem. 104: 636-642.
Genestra M (2007). Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 19, 1807–1819.
Guimarães, A. G. Oliveira, G. F. Melo M. S. et al., (2010). “Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol,” Basic and Clinical Pharmacology and Toxicology, vol. 107, no. 6, pp. 949–957, 2010.
Halliwell B and Gutteridge J. M. C. (2007). Free Radicals in Biology and Medicine, Oxford University Press, New York, NY, USA.
Halliwell B, Gutteridge JMC. (2007). Free Radicals in Biology and Medicine. Fourth Edition, Oxford University Press, Oxford, UK, 2007.
Hamill, F.A., S. Apio, N.K. Mubiru, M. Mosango, R. Bukenya-Ziraba, O.W. Maganyi and D.D. Soejarto, (2003). Traditional herbal drugs of Southern Uganda III. Isolation and methods for physical characterization of bioactive alkanols from Rubus apetalus. J. Ethnopharmacol., 87: 15-19.
Hammami, S., H. Jmii, R. E. Mokni, A. Khmiri, K. Faidi, H. Dhaouadi, et al., (2015). Essential Oil Composition, Antioxidant, Cytotoxic and Antiviral Activities of Teucrium pseudochamaepitys Growing Spontaneously in Tunisia. Molecules20:20426–20433.
Heleen W, Frank P, Alan C. The rat paw formalin test: Comparison of noxious agents. Pain. 1990;40(2):229-238.
Ibarra-Alvarado, C.; Rojas, A.; Luna, F.; Rojas, J.I.; Rivero-Cruz, B.; Rivero-Cruz, F.(2009). Vasorelaxant constituents of the leaves of Prunus serotina “capulín”. Rev. Latinoam. Quim., 37, 164–173.
Igwe K.K., Ijeh I.I., Okafor P.N., Anika S.M. (2015) Phytochemical Characterization Of Vernonia Amygdalina.Del Ethanolic Extract Fraction And Contractile Response On Isolated Uterine Tissue In Female Albino Wistar Rats. International Journal of scientific research and management (IJSRM) Volume 3 Issue 11 Pages 3684-3693
Ikpeme, E.V., U.B. Ekaluo, O.U. Udensi and E.E. Ekerette, (2014). Screening fresh and dried fruits of avocado pear (Persea americana) for antioxidant activities: An alternative for synthetic antioxidant. J. Life Sci. Res. Discovery, 1: 19-25.
Inoue N, Ikawa M, Isotani A, Okabe M. (2005). The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature., 10:234-8
J. Agric. Food Chem., 50 pp. 2454-2458
Kaiser, R and Lamparsky, D. (1980). Volatile Constituents of Osmanthus Absolute. In B. D. Mookheijee, & C. J. Mussinan (Eds.), Essential Oils (pp. 159-192). Wheaton, IL: Allured Publishing
Kambizi, L. and A.J. Afolayan, (2001). An ethnobotanical study of plants used for the treatment of sexually transmitted diseases (Njovhera) in Guruve District, Zimbabwe. J. Ethanopharmacol., 77: 5-9.
Kanei, N., Tamura, Y., & Kunieda, H. (1999). Effect of Types of Perfume Compounds on the Hydrophile-Lipophile Balance Temperature. Journal of Colloid and Interface Science, 218, 13-22
Li, L. L. Wang Q., Yang Y., Wu G., Xin X., And Aisa H.A. (2012) Chemical Components and Antidiabetic Activity of Essential Oils Obtained by Hydrodistillation and Three Solvent Extraction Methods from Carthamus tinctorius Acta Chromatographica 244, 653–665
Madhavi DL, Salunkhe DK. (1995). Toxicological aspects of food antioxidants. In: Madhavi DL, Deshpande SS, Salunkhe DK, editors. Food antioxidants. New York: Dekker. p. 267.
Mayanka Walia, Tavleen S. Mann, Dharmesh Kumar, Vijai K. Agnihotri, and Bikram Singh (2012). Chemical Composition and In Vitro Cytotoxic Activity of Essential Oil of Leaves of Malus domestica growing in Western Himalaya (India). Evidence-Based Complementary and Alternative Medicine Hindawi Publishing Corporation 2012, Article ID 649727, 6 pages.
Mbang, A., S. Owolabi, O. Jaja and J.O. Opeyemi, (2008). Evaluation of the antioxidant activity and lipid peroxidation of the leaves of Vernonia amygdalina. J. Complement. Integr. Med., Vol. 5, No. 1. 10.2202/1553-3840.1152
Michelle V, William M, Charles J, Alan R. Estrous cycle modulation of nociceptive behaviours elicited by electrical and formalin. Pharmacol Bioch Behavior. 2001;69(3- 4):315-324
Miller, R.A., Britigan, B.E. (1997). Role of oxidants in microbial pathophysiology. Clin. Microbiol. Rev. 1 0 ;1 – 18..
Niogret J, Legrand-Frossi C. (2005). Effect of 20-hydroxyecdysone on cannibalism, sexual behavior, and contact sex pheromone in the solitary female spider, Tegenaria atrica. General Comparative Endocrinol., 144:60–6.
Ogunlesi M, Okiei W, Ofor E, Osibote AE. (2009). Analysis of the essential oil from the dried leaves of Euphorbia hirta Linn (Euphorbiaceae), a potential medication for asthma. Afr J Biotech., 8:7042-50.
Opdycke DLJ, Letizia C. (1983). Monographs on fragrance raw materials, Caryophyllene oxide. Food Chem Toxicol., 21(5): 661–662.
Parthipan B, Suky MGT, Mohan VR. (2015). GC-MS analysis of phytocomponents in Pleiospermium alatum (Wall. ex Wight and Arn.) Swingle, (Rutaceae). J Pharm Phytochem., 4:216-22.
Pataki T, Bak I, Kovacs P, Baqchi D, Das DK, Tosaki A. (2002). Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. Am J Clin Nutr,. 75(5):894-899
Plotto, A., Barnes, K. W., & Goodner, K. L. (2006). Specific Anosmia Observed for β-Ionone, but not for α-Ionone: Significance for Flavor Research. Journal of Food Science, 71, 401-406
Praveen KP, Kumaravel S, Lalitha C. (2010). Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr J Biochem Res., 4:191-5.
Rajeswari G, Murugan M, Mohan VR.(2012). GC-MS analysis of bioactive components of Hugonia mystax L. (Linaceae). Res J Pharm Biol Chem Sci., 3:301-8.
Salih Chibani , Wissem Gherboudj , Ahmed Kabouche , Rachid Touzani , Talal Aburjai and Zahia Kabouche (2013) GC-MS Analysis of Senecio giganteus Desf. from Algeria, Journal of Essential Oil Bearing Plants, 16:1, 123-125,
Sanchez JC, Garcia RF, Cors MM. (2010). 1,1 Diphenyl-2- picrylhydrazyl radical and superoxide anion scavenging activity of Rhizophora mangle (L.) bark. Pharmacog. Res 2:279-84.
Santamour, F.S.( 1998). Amygdalin in Prunus leaves. Phytochemistry 47, 1537–1538
Sawadogo WR, Boly, Lompo M, Some N. Anti-inflammatory, analgesic and antipyretic activities of Dicliptera verticillata. Intl J Pharmacol. 2006;2:435-8
Sermakkani M, Thangapandian V. (2012) GC-MS analysis of Cassia italica leaf methanol extract. Asian J Pharm Clin Res., 5:90-4.
Siddhuraju, P., Mohan, P.S., Becker, K. (2002). Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem.,79 pp. 61-67
Singh, T. P., R. K. Singh, and P. Malik. (2014). Analgesic and anti-inflammatory activities of Annona squamosa Linn bark. J. Scientific and Innov. Res.3:60–64.
Sreejayan N., and Rao M N. (1996). "Free radical scavenging activity of curcuminoids." Arzneimittel-forschung, 46, 169-171.
Takako Yokozawa, Eun Ju Cho, Chan Hum Park, and Ji Hyun Kim, (2012). “Protective Effect of Proanthocyanidin against Diabetic Oxidative Stress,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 623879, 11 pages, 2012.
Tung, Y.-T., Chua, S.-Y. Wang M.-T, and Chang S.-T. (2008). Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresour. Technol.99:3908–3913.
Uyoh, E.A., P.N. Chukwura, I.A. David and A.C. Bassey, (2013). Evaluation of antioxidant capacity of two Ocimum species consumed locally as spices in Nigeria as a justification for increased domestication. Am. J. Plant Sci., 4: 222-230.
Veerapur VP, Prabhakar KR, Parihar VP, Kandadi MR, Ramakrishana S, Mishra B, et al, (2009). Ficus racemosa stem bark extract: A potent antioxidant and a probable natural radioprotector. Evid Based Complement Alternat Med 6:317-24.
Wei-Yu Lin , Yueh-Hsiung Kuo , Ya-Ling Chang , Che-Ming Teng , Eng-Chi Wang , Tsutomu Ishikawa , Ih-Sheng Chen. (2003). Anti-Platelet Aggregation and Chemical Constituents from the Rhizome of Gynura japonica Planta Med 69(8): 757-764
Yang D, Michel L, Chaumont JP, Millet-Clerc J. (1999). Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia. Nov;148(2):79-82.
Wirthensohn, M.G.; Chin, W.L.; Franks, T.K.; Baldock, G.; Ford, C.M.; Sedgley, M. (2010). Investigation of flavour compounds from sweet, semi-bitter and bitter almond kernels. Options Méditerranéennes., 94, 117–122.
Xie D. Y. and Dixon R. A. (2005). “Proanthocyanidin biosynthesis—still more questions than answers?” Phytochemistry, vol. 66, no. 18, pp. 2127–2144, 2005.
Yu, S. G., Anderson, P. J., & Elson, C. E. (1995). Efficacy of β-Ionone in the Chemoprevention of Rat Mammary Carcinogenesis. Journal of Agricultural and Food Chemistry, 43, 2144-2147
Zayed MZ, Fasihuddin BA, Wei-Seng H, Shek-Ling P. (2014). GC-MS analysis of phytochemical constituents in leaf extracts of Neolamarckia cadamba (Rubiaceae) from Malaysia. Int J Pharm Pharm Sci., 6:123-7.
Zheng, G.-Q., P. M. Kenney, and L. K. Lam. (1992). Sesquiterpenes from clove (Eugenia caryophyllata) as potential anticarcinogenic agents. J. Nat. Prod.55:999–1003.
Published
2018-09-30
Section
Research Articles